Plant Transcription Factor Database
Previous version: v3.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G43700.1
Common NameBZIP51, F2J6.6, SUE3, VIP1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bZIP
Protein Properties Length: 341aa    MW: 37790.9 Da    PI: 7.3258
Description VIRE2-interacting protein 1
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G43700.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       bZIP_1   5 krerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaLkkeleelkkevaklksev 63 
                  kr++r   NR +A rs +RK  ++ eLe+kv++L++e ++L  ++ +l+   ++l +e+
                  9***********************************************99999988887 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003383.5E-14192256IPR004827Basic-leucine zipper domain
PROSITE profilePS5021710.645194257IPR004827Basic-leucine zipper domain
PfamPF001703.5E-8196254IPR004827Basic-leucine zipper domain
SuperFamilySSF579591.41E-10196246No hitNo description
Gene3DG3DSA: hitNo description
CDDcd147039.41E-22197245No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0006952Biological Processdefense response
GO:0007231Biological Processosmosensory signaling pathway
GO:0008272Biological Processsulfate transport
GO:0009294Biological ProcessDNA mediated transformation
GO:0009652Biological Processthigmotropism
GO:0009970Biological Processcellular response to sulfate starvation
GO:0045596Biological Processnegative regulation of cell differentiation
GO:0051170Biological Processnuclear import
GO:0005634Cellular Componentnucleus
GO:0005829Cellular Componentcytosol
GO:0003682Molecular Functionchromatin binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0043621Molecular Functionprotein self-association
GO:0051019Molecular Functionmitogen-activated protein kinase binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000005anatomycultured plant cell
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 341 aa     Download sequence    Send to blast
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.226140.0flower| leaf| silique| vegetative tissue
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G43700-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Mostly expressed in dividing cells, present in leaves, roots and seedlings. {ECO:0000269|PubMed:15108305, ECO:0000269|PubMed:15824315}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a VirE2-interacting protein. VIP1 mediates nuclear translocation of VirE2 via its amino half, and interacts with histone H2A via it carboxyl half.
UniProtTranscription activator that binds specifically to the VIP1 response elements (VREs) DNA sequence 5'-ACNGCT-3' found in some stress genes (e.g. TRX8 and MYB44), when phosphorylated/activated by MPK3. Required for Agrobacterium VirE2 nuclear import and tumorigenicity. Promotes transient expression of T-DNA in early stages by interacting with VirE2 in complex with the T-DNA and facilitating its translocation to the nucleus, and mediates stable genetic transformation by Agrobacterium by binding H2A histone. Prevents cell differentiation and shoot formation. Limits sulfate utilization efficiency (SUE) and sulfate uptake, especially in low-sulfur conditions. {ECO:0000269|PubMed:11432846, ECO:0000269|PubMed:12124400, ECO:0000269|PubMed:15108305, ECO:0000269|PubMed:15824315, ECO:0000269|PubMed:17947581, ECO:0000269|PubMed:19820165, ECO:0000269|PubMed:20547563}.
Function -- GeneRIF ? help Back to Top
  1. Data indicate that the ability of VIP1 to interact with the VirE2 protein component of the T-complex and localize to the cell nucleus is sufficient for transient genetic transformation.
    [PMID: 15824315]
  2. study shows VIP1 is a direct target of Agrobacterium-induced MPK3; on phosphorylation by MPK3, VIP1 relocalizes to nucleus & regulates expression of PR1; MAPK-dependent phosphorylation of VIP1 is necessary for VIP1-mediated Agrobacterium T-DNA transfer
    [PMID: 17947581]
  3. provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif.
    [PMID: 19820165]
  4. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress.
    [PMID: 20547563]
  5. The nuclear localization of VIP1 is enhanced by increased turgor. VIP1 functions as a regulator of osmosensory signaling in Arabidopsis.
    [PMID: 22452852]
  6. A VIP1 response element-containing promoter was observed in dividing cells, probably resulting from activation of endogenous VIP1.
    [PMID: 23942522]
  7. Investigated the functions of VIP1, we discovered that VIP1 can react with an Ni(2)-activated derivative of horseradish peroxidase, HisProbe-HRP, suggesting that VIP1 can bind Ni(2).
    [PMID: 24057918]
  8. VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization.
    [PMID: 24953893]
  9. When overexpressed in Arabidopsis, some of them as well as VIP1 caused growth retardation under a mannitol-stressed condition, where VIP1 is localized mainly in the cytoplasm.
    [PMID: 25093810]
  10. Developed efficient protocols that resulted in pure and stable His-tagged VIP1 and VirE2, and using the purified proteins, performed peptide array screening and revealed the binding sites on both proteins.
    [PMID: 25212215]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Transcriptionally activated during the acquisition of pluripotentiality (in protoplasts) by pericentromeric chromatin decondensation and DNA demethylation. Targeted to degradation by the proteasome by VBF and Agrobacterium virF in SCF(VBF) and SCF(virF) E3 ubiquitin ligase complexes after mediating T-DNA translocation to the nucleus. {ECO:0000269|PubMed:15108305}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Interaction ? help Back to Top
Source Intact With
IntActSearch Q9MA75
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Enhanced low sulfur tolerance with higher rate of sulfate uptake at low sulfate levels. Improved tolerance to heavy metal (e.g. CdCl(2)) and oxidative stress (e.g. paraquat). {ECO:0000269|PubMed:20547563}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G43700
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0654530.0AY065453.1 Arabidopsis thaliana putative VirE2-interacting protein VIP1 (At1g43700) mRNA, complete cds.
GenBankAY1172840.0AY117284.1 Arabidopsis thaliana putative VirE2-interacting protein VIP1 (At1g43700) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_564486.10.0VIRE2-interacting protein 1
SwissprotQ9MA750.0VIP1_ARATH; Transcription factor VIP1
TrEMBLD7KNM80.0D7KNM8_ARALL; Vire2-interacting protein VIP1
STRINGAT1G43700.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP12617181
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Tzfira T,Vaidya M,Citovsky V
    VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity.
    EMBO J., 2001. 20(13): p. 3596-607
  3. Jakoby M, et al.
    bZIP transcription factors in Arabidopsis.
    Trends Plant Sci., 2002. 7(3): p. 106-11
  4. Tzfira T,Vaidya M,Citovsky V
    Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(16): p. 10435-40
  5. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  6. Avivi Y, et al.
    Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality.
    Dev. Dyn., 2004. 230(1): p. 12-22
  7. Tian GW, et al.
    High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta.
    Plant Physiol., 2004. 135(1): p. 25-38
  8. Deppmann CD, et al.
    Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs.
    Nucleic Acids Res., 2004. 32(11): p. 3435-45
  9. Tzfira T,Vaidya M,Citovsky V
    Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium.
    Nature, 2004. 431(7004): p. 87-92
  10. Lacroix B,Vaidya M,Tzfira T,Citovsky V
    The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation.
    EMBO J., 2005. 24(2): p. 428-37
  11. Li J,Krichevsky A,Vaidya M,Tzfira T,Citovsky V
    Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(16): p. 5733-8
  12. Lee JY, et al.
    Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(15): p. 6055-60
  13. Deppmann CD,Alvania RS,Taparowsky EJ
    Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks.
    Mol. Biol. Evol., 2006. 23(8): p. 1480-92
  14. Kawabe A,Nasuda S,Charlesworth D
    Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences.
    Genetics, 2006. 174(4): p. 2021-32
  15. Willems G, et al.
    The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci.
    Genetics, 2007. 176(1): p. 659-74
  16. Anand A, et al.
    Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants.
    Plant Cell, 2007. 19(5): p. 1695-708
  17. Cheng C, et al.
    An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice.
    BMC Genomics, 2007. 8: p. 175
  18. Shen H,Cao K,Wang X
    A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer.
    Biochem. Biophys. Res. Commun., 2007. 362(2): p. 425-30
  19. Djamei A,Pitzschke A,Nakagami H,Rajh I,Hirt H
    Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling.
    Science, 2007. 318(5849): p. 453-6
  20. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  21. Reiland S, et al.
    Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks.
    Plant Physiol., 2009. 150(2): p. 889-903
  22. Pitzschke A,Djamei A,Teige M,Hirt H
    VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(43): p. 18414-9
  23. Zaltsman A,Krichevsky A,Loyter A,Citovsky V
    Agrobacterium induces expression of a host F-box protein required for tumorigenicity.
    Cell Host Microbe, 2010. 7(3): p. 197-209
  24. Wu Y, et al.
    Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.
    J. Exp. Bot., 2010. 61(12): p. 3407-22
  25. Van Leene J, et al.
    Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.
    Mol. Syst. Biol., 2010. 6: p. 397
  26. Tsugama D,Liu S,Takano T
    A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis.
    Plant Physiol., 2012. 159(1): p. 144-55
  27. Persak H,Pitzschke A
    Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling.
    PLoS ONE, 2013. 8(2): p. e57547
  28. Lacroix B,Citovsky V
    Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta.
    Sci Rep, 2013. 3: p. 2440
  29. Tsugama D,Liu S,Takano T
    A bZIP protein, VIP1, interacts with Arabidopsis heterotrimeric G protein β subunit, AGB1.
    Plant Physiol. Biochem., 2013. 71: p. 240-6
  30. Tsugama D,Liu S,Takano T
    Metal-binding ability of VIP1: a bZIP protein in Arabidopsis thaliana.
    Protein J., 2013. 32(7): p. 526-32
  31. Shi Y,Lee LY,Gelvin SB
    Is VIP1 important for Agrobacterium-mediated transformation?
    Plant J., 2014. 79(5): p. 848-60
  32. Tsugama D,Liu S,Takano T
    Analysis of functions of VIP1 and its close homologs in osmosensory responses of Arabidopsis thaliana.
    PLoS ONE, 2014. 9(8): p. e103930
  33. Maes M, et al.
    The disordered region of Arabidopsis VIP1 binds the Agrobacterium VirE2 protein outside its DNA-binding site.
    Protein Eng. Des. Sel., 2014. 27(11): p. 439-46